SENATE BILL NO. 194

IN THE LEGISLATURE OF THE STATE OF ALASKA

THIRTY-FIRST LEGISLATURE - SECOND SESSION

BY THE SENATE COMMUNITY AND REGIONAL AFFAIRS COMMITTEE

Introduced: 2/17/20

3

Referred: Community and Regional Affairs, Resources

A BILL

FOR AN ACT ENTITLED

1 "An Act relating to advanced nuclear reactors."

* **Section 1.** AS 18.45.025(a) is amended to read:

2 BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF ALASKA:

- 4 (a) A person may not construct a nuclear fuel production facility, nuclear
 5 utilization facility, utilization facility, reprocessing facility, [OR] nuclear waste
 6 disposal facility, or advanced nuclear reactor in the state without first obtaining a
 7 permit from the Department of Environmental Conservation to construct the facility
 8 on land designated by the legislature under (b) of this section.
- 9 * Sec. 2. AS 18.45.025 is amended by adding a new subsection to read:
- 10 (d) Subsection (b) of this section does not apply to a person constructing an advanced nuclear reactor.
- * Sec. 3. AS 18.45.900 is amended by adding a new paragraph to read:
- 13 (9) "advanced nuclear reactor" means
- 14 (A) a nuclear fission reactor with significant improvements 15 compared to the most recent generation of fission reactors, such as

1	(i) additional inherent safety features;
2	(ii) lower waste yields;
3	(iii) improved fuel performance;
4	(iv) increased tolerance to loss of fuel cooling;
5	(v) enhanced reliability;
6	(vi) increased proliferation resistance;
7	(vii) increased thermal efficiency;
8	(viii) reduced consumption of cooling water;
9	(ix) the ability to integrate into electric applications and
10	nonelectric applications;
11	(x) modular sizes to allow for deployment that
12	corresponds with the demand for electricity;
13	(xi) operational flexibility to respond to changes in
14	demand for electricity and to complement integration with intermittent
15	renewable energy;
16	(B) a prototype nuclear fission reactor with significant
17	improvements compared to the most recent generation of fission reactors, such
18	as those listed in (A) of this paragraph; or
19	(C) a fusion reactor.