CS FOR SENATE BILL NO. 194(CRA)

IN THE LEGISLATURE OF THE STATE OF ALASKA

THIRTY-FIRST LEGISLATURE - SECOND SESSION

BY THE SENATE COMMUNITY AND REGIONAL AFFAIRS COMMITTEE

Offered: 3/11/20 Referred: Resources

5

6

7

8

9

Sponsor(s): SENATE COMMUNITY AND REGIONAL AFFAIRS COMMITTEE

A BILL

FOR AN ACT ENTITLED

1 "An Act relating to advanced nuclear reactors."

2 BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF ALASKA:

- * Section 1. AS 18.45.025(a) is amended to read:
 (a) A person may not construct a nuclear fuel production.
 - (a) A person may not construct a nuclear fuel production facility, nuclear utilization facility, utilization facility, reprocessing facility, [OR] nuclear waste disposal facility, or advanced nuclear reactor in the state without first obtaining a permit from the Department of Environmental Conservation to construct the facility on land designated by the legislature under (b) of this section.
 - * Sec. 2. AS 18.45.025 is amended by adding a new subsection to read:
- 10 (d) Notwithstanding (a) or (b) of this section, the Department of
 11 Environmental Conservation may issue a permit to a person to construct an advanced
 12 nuclear reactor that has a power output of less than 300 megawatts on land not
 13 designated by the legislature under (b) of this section.
- * Sec. 3. AS 18.45.900 is amended by adding a new paragraph to read:
- 15 (9) "advanced nuclear reactor" means

1	(A) a nuclear fission reactor with significant improvements
2	compared to fission reactors in operation before January 1, 2020, such as
3	(i) additional inherent safety features;
4	(ii) lower waste yields;
5	(iii) improved fuel performance;
6	(iv) increased tolerance to loss of fuel cooling;
7	(v) enhanced reliability;
8	(vi) increased proliferation resistance;
9	(vii) increased thermal efficiency;
10	(viii) reduced consumption of cooling water;
11	(ix) the ability to integrate into electric applications and
12	nonelectric applications;
13	(x) modular sizes to allow for deployment that
14	corresponds with the demand for electricity;
15	(xi) operational flexibility to respond to changes in
16	demand for electricity and to complement integration with intermittent
17	renewable energy;
18	(B) a prototype nuclear fission reactor with significant
19	improvements compared to fission reactors in operation before January 1,
20	2020, such as those listed in (A) of this paragraph; or
21	(C) a fusion reactor.